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; ' ' PART 1
: BOOKS AND ARTICLES PREPARED WITH AFOSR SUPPORT
January 15. 1982--January 31. 1985

::' Books
B - +71. Grossberg. S.. Neural Models in Psychology: The Grossherg Lectures,
O P. Killeen and D. Hestenes (Eds.). Hillsdale. NJ: Erlbaum. 1985. in preparation.

+72. Grossberg. S.. The Adaptive Brain. I: Learning. Reinforcement. Moti-
o vation. and Rhythm. Amsterdam: North-Holland. 1985. in preparation.
L . .
:; +73. Grossberg. S.. The Adaptive Brain. II: Vision. Speech, Language, and
:'; Motor Control. Amsterdam: North-Holland. 1985. in preparation.

¢Z+74. Grossberg. S. and Kuperstein. M.. Neural Dynamics of Adaptive Sen-
sory-Motor Control: Ballistic Eye Movements. Amsterdam: North-Holland, 1985,
in preparation.

e
:e::‘ 1. Ayers. J.L.. Carpenter, G.A.. Currie. S., and Kinch. J., Which behavior does
) the lamprey central motor program mediate? Science. 1983, 221, 1312-1314.
e +7*2. Carpenter, G.A., A comparative analysis of structure and chaos in models
9\ of single nerve cells and circadian rhythms. In E. Basar, H. Flohr, H. Haken, and A.J.
L Mandell (Eds.), Synergetics of the Brain. New York: Springer-Verlag. 1983.
:’i +3. Carpenter. G.A. and Grossberg. S.. Dynamic models of neural systems: Prop-
R agated signals, photoreceptor transduction, and circadian rhythms. In J.P.E. Hodgson
) (Ed.). Oscillations in Mathematical Biology. New York: Springer-Verlag, 1983.
::;’ +*4. Carpenter, G.A. and Grossberg. S., A neural theory of circadian rhythms: The
N gated pacemaker. Biological Cybernetics, 1983. 48, 35-59.
N +5. Carpenter, G.A. and Grossberg, S.. A neural theory of circadian rhythms:
' . . . .
o Aschoff’s rule in diurnal and nocturnal mammals. American Journal of Physiology, 1984,
N 247. R1067-R1082.
e +*6. Carpenter. G.A. and Grossberg, S.. Neural dynamics of category learning and
,‘"ii? recognition: Attention, memory consolidation. and amnesia. In preparation.
':::‘ +7. Cohen. M.A. and Grossberg, S., Absolute stability of global pattern formation
:I':!; and parallel memory storage by competitive neural networks. Transactions I.LE.E.E.. 1983,
ok SMC-13. 815-826.

+*8. Cohen. M.A. and Grossberg. S.. Some global properties of binocular resonances:
LN Disparity matching. filling-in. and figure-ground synthesis. In P. Dodwell and T. Caelli
B (Eds.). Figural Synthesis. Hillsdale. NJ: Erlbaum. 1984.
:n: +79. Cohen. M.A. and Grossberg. S.. Neural dynamics of brightness perception:
Al Features. boundaries. diffusion. and resonance. Perreption and Psychophysics. 1984, 36,
ey 428-456.
~ *10. Cohen. M.A. and Grossberg. S.. Absolute stability of pattern processing and
‘,c: . parallel memory storage by competitive neural networks. Proceedings of the 1.LE.E.E.
'.::: International Conference on Systems. Man. and Cybernetics. 1984.
:::s +*11. Cohen, M.A. and Grossberg. S.. Neural dynamics of speech and language
::‘f: coding: Developmental programs. perceptual grouping, and competition for short term

memory. In preparation.
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+12. Grossberg. S., Associative and competitive principles of learning and develop-
ment: The temporal unfolding and stability of STM and LTM patterns. In S.I1. Amari and
i M. Arbib (Eds.). Competition and Cooperation in Neural Networks. New York:
Springer-Verlag. 1982.

+13. Grossberg, S., Processing of expected and unexpected events during con-
¥ ditioning and attention: A psychophysiological theory. Psychological Review, 1982. 89.
B 520-572.
B +14. Grossberg. S.. A psychophysiological theory of reinforcement. drive. motivation,
and attention. Journal of Theoretical Neurobiology. 1982. 1. 286--369.

+*15. Grossberg. S., The quantized geometry of visual space: The coherent compu-
tation of depth. form. and lightness. Behavioral and Brain Sciences. 1983, 6. 625-657.

i

;: +°16. Grossberg. S., Reply to commentators on “The quantized geometry of visual
A space: The coherent computation of depth. form. and lightness.” Behavioral and Brain
;t Sciences. 1983. 6, 676-692.

+*17. Grossberg, S., Neural substrates of binocular form perception: Filtering,
matching. diffusion. and resonance. In E. Basar. H. Flohr. H. Haken, and A.J. Mandell

g (Eds.). Synergetics of the Brain. New York: Springer-Verlag, 1983.

o +*18. Grossberg, S., Adaptation and gain normalization: A comment on Ullman and
o Schechtman (1982). Proceedings of the Royal Society of London (B), 1983, 219, 471-473.
" +19. Grossberg, S.. Some psychophysiological and pharmacological correlates of a

developmental, cognitive, and motivational theory. In R. Karrer. J. Cohen. and P. Tueting
(Eds.). Brain and Information: Event Related Potentials. New York: New York

;; Academy of Sciences, 1984.
P, 20. Grossberg, S., Outline of a theory of brightness, color. and form perception.
¥ In E. Degreef and J. van Buggenhaut (Eds.), Trends in Mathematical Psychology.
o Amsterdam: North-Holland, 1984.
*21. Grossberg. S.. The hypothalamic control of eating and circadian rhythms:
f Opponent processes and their chemical modulators. In N. Jaeger and L. Rensing (Eds.),
;; Temporal Order. New York: Springer-Verlag, 1984.
A, *22. Grossberg. S., The microscopic analysis of behavior: Toward a synthesis of
% instrumental. perceptual, and cognitive ideas. Behavioral and Brain Sciences. 1984, 7,
R 594- 595.
‘ *23. Grossberg. S.. Statistical mechanics of visual form perception: The resolution
R of uncertainty. In S. Diner and G. Lochak (Eds.). Proceedings of the George David
" Birkhoff Centennial: Dynamical Systems-—A Renewal of Mechanism. New York:
b Springer-Verlag. 1985.
‘, 24. Grossberg. S.. Four frames do not suffice. Behavioral and Brain Sciences, in
press. 1985.
N *25. Grossberg. S. and Mingolla. E.. Neural dynamics of form perception: Boundary
X completion. illusory figures. and neon color spreading. Psychological Review, in press.
oy 1085.
¥ #26. Grossberg. S. and Mingolla. E.. Neural dynamics of perceptual grouping:
o Textures. boundaries. and emergent segmentations. In preparation.
+°'27. Grossberg .S. and Stone. G.0.. Neural dynamics of word recognition and
:' recall: Attentional priming. learning. and resonance. In preparation.
:'. 28. Mingolla. E.. The perception of shape and illuminant direction from shading.
, Unpublished Ph.D. Thesis. University of Connecticut. 1983.
29. Mingolla. E. and Todd. J.T.. Computational techniques for the graphic simu-
lation of quadric surfaces. Journal of Experimental Psychology: Human Perception and
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Performance. 1984. 10, 740-745.
30. Mingolla, E. and Todd. J.T.. Perception of solid shape from shading. In
" preparation.

31. Todd. J.T. and Mingolla. E.. The perception of surface curvature and direction
. of illumination from patterns of shading. Journal of Experimental Psychology: Human
:;‘ ' Perception and Performance. 1983. 9. 583-595.
* 32. Todd. J.T. and Mingolla. E.. The simulation of curved surfaces from patterns of
:s , optical texture. Journal of Experimental Psychology: Human Perception and Performance,
:‘ 1984, 10. 734-739.
'; # Also supported in part by the Army Research Office.
4 ¢¢ Also supported in part by the National Institutes of Health.
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+ Also supported in part by the National Science Foundation.
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PART 11

T e e

REVIEW OF RESEARCH

1. Introduction

During the three-vear funding cycle. our group has made major progress in several im-

portant areas of psychology and neurobiology. In every area. we have discovered new prin-

PR

ciples of behavioral organization, have translated these principles into real-time adaptive

P

neural networks. have used these models to unify the explanation of large interdisciplinary
data bases through systematic computer simulations and mathematical analyses, and have
thereby characterized these circuits for implementation s new types of parallel computers

in artificial intelligence applications.

3 A large number of new predictions have also been made. Several of them have received
}: experimental support during the funding cycle. A number of older predictions have also
’:sf received experimental support during the funding cycle. In addition to our modelling work,
’ several articles reporting experimental results on surface perception (shape-from-shading)
f:; have also been prepared and published.

" Due to the extent and interdisciplinary nature of the results. the following review will
. describe highlights of each activity. Abstracts of illustrative articles are also included to
:: provide further‘ details.
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2. Perceptual Dynamics of Form. Color. Lightness. and Depth Perception

Articles: 7, 8. 9. 10, 15. 16. 17. 18. 20. 23. 25. 26.

In this work. we have been developing a unified theory of how the visual system syn-
thesizes coherent percepts from noisy retinal data. Qur work has led us to discover and
characterize the processing rules of several interacting visual subsyvstems: a Boundary Con-
tour System. a Feature Contour System. and an Object Recognition System. The results
clarify why alternative approaches have not been able to provide unified explanations of a

broad range of visual and neural data.

In particular. many artificial intelligence models for computer vision are based upon
19th century mathematical ideas. such as Laplacian. surface normal, and curvature. All of
these concepts describe local properties of geometrical objects. Our results have led to a
new understanding of how visual system interactions exploit contextual information. rather
than relying upon local data. These results embody new ideas concerning the foundations
of geometry. statistical mechanics, decision theory. the resolution of uncertainty in quantum
measurement systems. and phase transitions in very large dissipative systems of nonlinear
differential equations. Our results hereby suggest a new foundation for theoretical visual
stvdies, and provide converging evidence that such mechanisms are realized in striate
and prestriate visual cortex. In addition. we have proved global mathematical theorems
to establish the absolute stability of the neural networks which realize our perceptual

processing ideas.

Abstracts of several illustrative articles are listed below.
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tHE BEHAVIORAL AND BRAIN SCIENCES (1983) 6, 625-692

' pmed m the United States of America
s The quantized geometry of visual
“

g space: The coherent computation
i of depth, form, and lightness

4
o
bl Stephen Grossberg
Center for Adaptive Systems, Department of Mathematics, Boston
X University, Boston, Mass. 02215
o
=.
.': Abstract: A theory is presented of how global visual interactions between depth, length, lightness, and form percepts can occur. The
¥ - N . - P s .
) theory suggests how quantized activity patterns which reflect these visual properties can coherently fill-in, or complete, visually
ambiguous regions starting with visually informative data features. Phenomena such as the Comnsweet and Craik-O'Brien effects,
. phantoms and subjective contours, binocular brightness summation, the equidistance tendency, Emmert’s law, allelotropia,
‘ A multiple spatial frequency scaling and edge detection, figure-ground completion, coexistence of depth and binocular rivalry,
% reflectance rivalry, Fechner's paradox, decrease of threshold contrast with increased number of cycles in a grating pattern,
.:‘ bysteresis, adaptation level tuning, Weber law modulation, shift of sensitivity with background luminance, and the finite capacity of
‘,: visual short term memory are discussed in terms of a small set of concepts and mechanisms. Limitations of alternative visual theories
i which depend upon Fourier analysis, Laplacians, zero-crossings, and cooperative depth planes are described. Relationships between
monocular and binocular processing of the same visual patterns are noted, and a shift in emphasis from edge and disparity
computations toward the characterization of resonant activity-scaling correlations across multiple spatial scales is recommended. This
AW recommendation follows from the theory's distinction between the concept of a structural spatial scale, which is determined by local
.:. receptive field properties, and a functional spatial scale, which is defined by the interaction between global properties of a visual
i scene and the network as a whole. Functional spatial scales, but not structural spatial scales, embody the quantization of network
:0 activity that reflects a scene’s global visual representation. A functional scale is generated by a filling-in resonant exchange, or FIrE,
‘|: Whlcmn be ignited by an exchange of feedback signals among the binocular cells where monocular patterns are binocularly
[N matched.
" Keywords: binocular vision; brightness perception; figure-ground: feature extraction; form perception; neural network; nonlinear
¢ resonance; receptive field: short-term memory:; spatial scales; visual completion
'
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e:' Perception & Psvchophysics
AL 1984, 36 (5). 428-456

Neural dynamics of brightness perception:

“ [ L L

_::;: Features, boundaries, diffusion, and resonance

¥,

»'\Q'

)

! .:‘0 ] MICHAEL A. COHEN and STEPHEN GROSSBERG

) Boston University, Bosion, Massachusents

oyt A real-time visual processing theory is used to unify the explanation of monocular and binocular

oy brightness data. This theory describes adaptive processes which overcome limitations of the visual

) . uptake process to synthesize informative visual representations of the external world. The bright-

zq ness data include versions of the Craik-O’Brien-Cornsweet effect and its exceptions, Bergstrom’s

) demonstrations comparing the brightnesses of smoothly modulated and step-like luminance pro-

L files, Hamada’s demonstrations of nonclassical differences between the perception of luminance
v decrements and increments, Fechner’s paradox, binocular brightness averaging, binocular bright-

W ness summation, binocular rivalry, and fading of stabilized images and ganzfelds. Familiar con-

e cepts such as spatial frequency analysis, Mach bands, and edge contrast are relevant but insuffi-
> cient to explain the totality of these data. Two parallel contour-sensitive processes interact to

’ generate the theory’s brightness, color, and form explanations. A boundary-contour process is
) sensitive to the orientation and amount of contrast but not to the direction of contrast in scenic
Y edges. It generates contours that form the boundaries of monocular perceptual domains. The spatial
£ patterning of these contours is sensitive to the global configuration of scenic elements. A feature-
contour process is insensitive to the orientation of contrast, but is sensitive to both the amount

[ of contrast and to the direction of contrast in scenic edges. It triggers a diffusive filling-in reac-
4 :" tion of featural quality within perceptual domains whose boundaries are dynamically defined
t:‘ by boundary contours. The boundary-contour system is hypothesized to include the hypercolumns
‘x& in visual striate cortex. The feature-contour system is hypothesized to include the blobs in visual
:t:‘:l striate cortex. These preprocessed monocular activity patterns enter consciousness in the theory
hoG via a process of resonant binocular matching that is capable of selectively lifting whole monocu-

lar patterns into a binocular representation of form-and-color-in-depth. This binocular process
KR, 13 hypothesized to occur in area V4 of the visual prestriate cortex.
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) 1948, 92, No. 2, 173-211 i 33-295X/85/300.7%

Neural Dynamics of Form Perception: Boundary Completion,
Illusory Figures, and Neon Color Spreading

Stephen Grossberg and Ennio Mingolla
Center for Adaptive Systems, Boston University

L.,

A real-time visual processing theory is used to analyze real and illusory coatour
formation, contour and brightness interacticns, neon color spreading, comple-
mentary color induction, and filling-in of discounted illuminants and scotomas.
The theory also physically interprets and generalizes Land’s retinex theory. These
phenomena are traced to adaptive processes that overcome limitations of visual
uptake to synthesize informative visual representations of the external world. Two
parallel contour sensitive processes interact to generate the theory’s brightness,
i color, and form estimates. A boundary contour process is sensitive to orientation
e and amount of contrast but not to direction of contrast in scenic edges. It
L synthesizes boundarics sensitive 10 the global configuration of scenic elements. A
S Jeature contour process is insensitive to orientation but sensitive to both amount
e of contrast and to direction of contrast in scenic edges. It triggers a diffusive
N filling-in of featural quality within perceptual domains whose boundaries are
U determined by completed boundary contours. The boundary contour process is
hypothesized to include cortical interactions initiated by hypercolumns in Area
¥ 17 of the visual cortex. The feature contour process is hypothesized to include
[N ) cortical interactions initiated by the cytochrome oxydase staining blobs in Area
! 17. Relevant data from striate and prestriate visual cortex, including data that
:oport two predictions, are reviewed. Implications for other perceptual theories

: a: ' axioms of geometry are discussed.
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1EEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. SMC-13. NO. §, SEPTEMBER /OCTOBER 1983

Absolute Stability of Global Pattern Formation
and Parallel Memory Storage by
Competitive Neural Networks

MICHAEL A. COHEN aND STEPHEN GROSSBERG

Abstract —The process whereby input patterms are transformed snd
stored by competitive cellular networks is considered. This process arises in
such diverse subjects as the short-term storage of visual or language
patterns by neural networks, pattern formation due to the firing of morpho-
genetic gradients in developmental biology, control of choice behavior
during macromolecular evolution, and the design of stable context-sensitive
parallel processors. In addition to systems capable of approaching one of
perhaps infinitely many equilibrium points in response to arbitrary input
patterns and initial data, one (inds in these subjects a wide variety of other
behaviors, notably traveling waves, standing waves, resonance, and chaos.
The question of what general dynamical constraints csuse giobal approach
t0 equilibria rather than large amplitude waves is therefore of considersbie
interest. In another terminology. this is the question of whether giobal
pattern formsation occurs. A relsted question is whether the global pattern
formation property persists when system parameters slowly change in an
unpredictable fashion due to self-organization (development, learning).
This is the question of sbsolute stability of global pattern formation. It is
shown that many model systems which exhibit the sbsolute stability prop-
erty can be written in the form

= =a(x)[b(x) ~ L cudi(x) v
A=l

1= 1.2,-- -, n, where the matrix C = ||c,, || is symmetric and the system as
8 whole is competitive. Under these circumstances. this system defines a

X WA OBONOBOOEX]
AN ‘\' Q‘f\' ’l’: Wy I’Q ATUCTR M SRR M Tt s h‘ ﬁ“l“"g '*} Sttt e P T

global Lispunov function. The absolute stability of systems with infinite but
totally disconnected sets of equilibrium points can then be studied using the
LaSalle invariance principle, the theory of several complex varishles, and
Sard’s theorem. The symmetry of matrix C is important since competitive
systems of the form (1) exist wherein C is arbitrarily close to & symmetric
matrix but almost all trajectories persistently oscillate, as in the voting
paradox. Slowing down the competitive feedback without violating symme-
try, as in the systems

d L]
7’:— =a,(x)]b(x)- 2 cudy (V1)
k=]

d
d.—'l', - '.(-‘.)[/,(X,) —.Vr]'

also enables sustained oscillations to occur. Our results thus show that the
use of fast symmetric competitive feedback is a robust design constraint for
guaranteeing absolute stability of giobal pattern (ormation.
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3. Experiments on Surface Perception (Shape-from-Shading)

Articles: 28-32.

. These experiments have developed computer graphics programs whereby idealized 2-D
ii: images of 3-D surfaces can be constructed and manipulated at will. Using these images.
k: . psvchophysical methods have been developed to test subjects’ percepts of 3-D surfaces.
:: These experimental results have cast serious doubt upon the psychological validity of tra-
,_: ditional shape-from-shading algorithms. and have provided essential new data for building
"

an adequate theory of surface perception. An illustrative Abstract is included below.
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g

R Perception of Surface Curvature and Direction of
',,:‘ Mllumination From Patterns of Shading

James T. Todd Ennio Mingolla
Brandeis University University of Connecticut

& Three experiments examine the perceptual salience of shading information for
:-: the visual specification of three-dimensional form. The observers in these exper-
W iments were required to estimate the surface curvature and direction of illumi-
b nation depicted in computer-synthesized images of cylindrical surfaces, both with
o and without texture. The results indicate that the shininess of a surface enhances
the perception of curvature, but has no effect on perceived direction of illumi-
o nation; and that shading is generally less effective than texture for depicting sur-
N faces in three dimensions. These and other findings are used to evaluate the
& psychological validity of several mathematical analyses of shading information
n:\l that have recently been proposed in the literature.
4
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4. Neural Dynamics of Adaptive Sensory-Motor Control: Ballistic Eye

Movements

Book: 4.

This book introduces and develops a quantitative neural theory of a complex sensory-
motor system: the saccadic eve movement system. Saccadic eye movements are ballistic
movements of great speed and accuracy in humans and many other mammals. The present
work describes a number of general functional problems which need to be solved by the
saccadic eye movement system. as well as by other sensory-motor systems. Specialized
neural circuit solutions of these problems. within the context of ballistic eve movements,
are used to unify the discussion of a large behavioral and neural data base concerning
this sensory-motor system. A substantial number of new experimental predictions are also

made with which to further test the theory.

Many of the functional problems for which we have suggested solutions were identi-
fied through a consideration of how the saccadic system can automatically calibrate itself
through processes of development and learning. We suggest that an analysis of sensory-
motor performance. in the absence of an analysis of self-calibration through learning. does
not provide enough constraints to characterize the mechanisms of an entire sensory-motor

system.

In addition to unifying and predicting data. the present work suggests new real-time
circuit designs for adaptive robots. and thus represents a contribution to artificial intel-
ligence. adaptive control theory. and engineering. All of the neural circuit designs are
expressed and analysed using the language of nonlinear systems of differential equations.
The work is thus a contribution to applied mathematics and dynamical systems. The

interdisciplinary nature of the book may make it useful to scientists in several different

fields.

Using these results, one can now being to analyse how mechanisms of visual perception
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5 "v@‘. ' and of saccadic eve movements work together to build self-consi-tent representations of
R
;. rapidly scanned complex scenes.
The scope of this work is illustrated by the book’s Table of «'ontents:
A
e TABLE OF CONTENTS
i
:’.'. CHAPTER 1: MULTIPLE LEARNING PROBLEMS AREI
‘ SOLVED BY SENSORY-MOTOR SYSTEMS
Y
R 1.1. Introduction: Brain Designs are Adaptive Designs 1
;;1:: 1.2. Eye Movements as a Model Sensory-Motor System 2
'ig 1.3. Intermodality Circular Reactions: Learning Gated by 4
e Comparison of Target Position with Present Position
‘ A. Reciprocal Associative Transformations 5
) between Target Position Maps
R B. Matching of Target Position with Present Position 5
e C. Intermodality Map Learning is Gated 5
:i:,:: by Intramodality Matching
.3§:,« D. Dimensional Consistency: Head Coordinate Maps 7
e 1.4. Learning a Target Position Map 7
or A. A Many-to-One Transform 7
K B. Map Invariance 9
N C. A Multimodal Map 9
:;:::1 D. Error-Tolerance and Map Learning 9
b E. Self-Consistent Map Learning 9
b, F. A Self-Regulating Map 11
e 1.5. From Multimodal Target Map to Unimodal Motor Map 11
it 1.6. Vector Maps from Comparisons of Target Position Maps 12
:!;v,‘ and Present Position Maps
‘:::e, 1.7. Automatic Compensation for Present Position: 13
o Code Compression
pad 1.8. Outflow vs. Inflow in the Registration of Present Position 13
1.9. Corollary Discharges and Calibration of Muscle Plant 15
e Contractions
:v"-: 1.10. Outflow-Inflow Pattern Matches and Linearization of Muscle 16
ke Responses: Automatic Gain Control
:::n: 1.11. Motor Vectors Calibrated by Visual Error Signals 17
M 1.12. Postural Stability: Separate Calibration of Muscle Length 18
and Tension
o 1.13. Planned vs. Reactive Movements: The Rear View 19
Sl Mirror Problem
AR 1.14. Attentional Gating 21
el 1.15. Intermodality Interactions in a Head Coordinate Frame 21
o 1.16. Head Coordinate Maps Encode Predictive Saccades 23
' 1.17. The Relationship between Macrotheory and Microtheory 27
K
:a';': CHAPTER 2: PARALLEL PROCESSING OF 31
:':ﬁ‘ MOVEMENT AND ERROR SIGNALS
‘f:‘s:: 2.1. Sensory-Motor Coordinates: Hemifield Gradients 31
' 2.2. Choice of Fixation Light: Network Competition 33
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R C. Featural Noise Suppression: Adaptation Level 42
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'pv 3.1. Compensation for Initial Position in the Movement Signal 55
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ooy 3.4. Self-Movement vs. World-Movement: 61
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:n'.:: Saccades. VOR, Posture. and Muscle Gain
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A. Perform and Test 65
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!::' Movement Systems
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R Visual Error Signals
e C. Opponent Processing of Visual Error Signals 67
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5 Logarithms and Bidirectional Parallel Fibers
o 3.13. Fractured Somatotopy and/or Bilateral
Uy Cerebellar Organization
e 3.14. More Constraints on Cerebellar Learning
3.15. Dual Action. Incremental Learning, and Error Signal
N Attenuation
B 3.16. Numerical Studies of Adaptive Foveation due to Cercbellar
5 Gain Changes: Learned Compensation for System
el Nonlinearities
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;&}3‘ 3.18. Models of Saccadic Error Correction
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5. Self-Organizing Recognition Processes for Vision. Speech. and Cognition

Articles: 6. 11. 12, 19. 27.

This work has been developing Grossberg’s adaptive resonance theory. This theory
has emerged from an analysis of how recognition codes can be learned. without a teacher.
in response to a temporal stream of input patterns. Unlike other theories. our results
show how such a self-organizing recognition code can self-stabilize its learning in response
to arbitrarily many input patterns of arbitrary complexity. This fundamental insight has
enabled the theory to discover and implement a wealth of new ideas about attention.
bottom-up adaptive filtering. top-down expectancy learning, pattern matching. habitua-
tion of the orienting response. and self-regulating parallel memory search. The results
have also led to the introduction of new computational units for use in visual, speech,
and langauge coding, including a new circuit design— called a masking field—for rapidly

coding multiple groupings of an input pattern.

The models have been tested. for example, by explaining reaction time and error rate
data in lexical decision. word familiarity. and word superiority experiments: by analysing
and predicting interactions between several evoked potentials (processing negativity, mis-
match negativity. early positive wave, P300, CNV): and by providing a rigorous theory
in which the intuitions of the major psychological information processing concepts have
been modified and thereby unified: e.g., controlled vs. automatic processing. automatic
spreading activation vs. conscious attention. letter nodes vs. word nodes in interactive
activation models. In every case. deficiencies od earlier models could be traced to their
insufficient analysis of relationships between learning and information processing. All the
models have a neurophysiological. anatomical. and neuropharmacological interpretation

which has received increasing support from recent data.
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:: 6. Neural Dynamics of Conditioning. Reinforcement. and Attention
‘
‘
h? Articles: 13. 14. 19. 21, 22.
# These articles have developed a neural theory aimed at explaining a large body of
Ly
¥
:l: interdisciplinary data about Paviovian and instrumental conditioning. To accomplish this.
!
14
j: the theory has discovered and joined together mechanisms of conditioning. reinforcement.
¥ motivation. internal drive (homeostasis). nonspecific arousal. attention, and cognitive pro-
H
1 . e a , - .. .
;: cessing (Section 3). Such results begin to show how a living system’s internal requirements
)
t . ” . . . . .
! interact with its processing of external events to generate predictively appropriate and
o efficient motor commands. The results clarify data about interactions between neocortex,
b
e hippocampus. hypothalamus. septum, reticular formation. and cerebellum.
@
¥ . . . . . .
K From the viewpoint of advanced technology. each of the contributions in Sections 3-6
helps to characterize a different command module that will be useful for designing the
‘]
4 . . ..
‘ freely moving. self-teaching. self-repairing robots of the future.
A
,’

Two Abstracts and one Table of Contents are listed below to illustrate the scope of

the results.

]

'\'1
20
"l

' : ey, AN PN A = T W
LR AN V,-n‘\,h‘,;h',v'sfﬁ 3\.”;‘,,“'..' ‘,‘Q",‘&UQ_;‘I?Q :_f,'l?s l!l ! .nhei ‘."’1.::; ifo*‘.:i".e‘l,s't.eqa S\



-] AR - o 1

R
Nk
oY
'i‘r
)
‘w.
&
e
R
;.g::l
i
oy ftowr CR g e T 1902 by e 003 32990075
s
) o .
53N Processing of Expected and Unexpected Events During
o, Conditioning and Attention: A Psychophysiological Theory
:’ Department of Mathemarics, Bosiga University
3 Some recent formal models of Paviovian and instrumental conditioning cootain
\ insernal paradoxes that restrict their predictive power. Thess paradoxes can be
o traced 10 an isadequese formulation of how mechanismns of short-term mermory
) and long-eTm memory work together to coatrol the shifting balance between the
s mdwuwmnmmhmwum
2% ened, s uaified processing framework is suggested wherein atientional sad ori-
P eating subsystemss coexist in s complementary relstionship that controls the adap-
et tive ssif-organization of internal representations in respoase to expected and
unsxpected events. In this framework, conditioning and atientional constructs
: can be more directly validased by interdisciplinary paradigms in which seemingly
disparsts phenomena can be shown to share similas physiological and phar.
. mechanisms. A model of cholinergic i interactions
L suggasts bow drive, reinforcer, and arousal inputs reguiate motivational baseline,
Hat bysteresis, and rebound, with the hippocampus as s final common peth. Ex-
;-k tinction, conditioned emotional responses, conditioned avoidance responses, sec-
T, conditioning, and mverted U effects also occur. A similar design in sensory
W and cognitive repressutations suggests how short-term memory reset and asten-
Lt tional resocnance occur and are related to evoked potentials such as N200, P300,
and contingsat negative variatioa (CNV). Compstitive feedback properties such
: = patwra maching, coantrast enhancement, and normalization of short-term
". memory pstierns maks possible the hypothesis testing procedures that search for
NS and defins new internal representations in response to unexpectad events. Long-
)
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» A PSYCHOPHYSIOLOGICAL THEORY OF REINFORCEMENT,
W DRIVE, MOTIVATION AND ATTENTION
' STEPHEN GROSSBERG*®
Center for Adaptice Systems,
Department of Mathematics, Boston University,
[ Boston, Massachusets 02215, U.S.A.
?
%2 (Received February 16, 1982)
2
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W
s
h Abstract
, This article derives a real-time theory of motivated behavior and presents
some of its physiological and pharmacological correlates. The theory
mechanistically explicates instrumental concepts such as reinforcement, drive.
h incentive motivation. and habit, and describes their relationship to cognitive
concepts such as expectancy, competition, and resonance. The theory shows
o how a real-time anslysis of an animal's adaptive behavior in prescribed
+a environments can disclose network principles and mechanisms which imply
't a restructuring and unification of the data in terms of design principles and
oF mechanisms rather than the vicissitudes of exeprimental methodology or
l.'. historical accident. A cumparative analysis and unification of other theories
4 A is then possible, such as the classical theories of Hull. Spence, Neal Miller,
- Estes. Logan. Livingston, and John. The data which are discussed include
) overshadowing and unblocking: suppression by punishment: reinforcement
‘ contrast effects: hypothalamic seif-stimulation; ditferential effects of drive.
¢ . reinforcement. incentive motivation, expeciancies, and short-term memory
competition on learning rate. behavioral choice, and performance speed; the
:. role of polyvalent cortical cells. muiltipie sensory representations. recurrent

A on<center off-surround neocortical and paleocortical interactions. hippo-
ﬂ! campal-hypothalamic. medial forebrain bundle, and thalamocortical inter-
actions on motivated behavior: effects of drugs like chlorpromazine, reserpine,

‘;l‘ monoamine oxidase inhibitors and amphetanune on instrumental behavior.
\ Of special interest are network "hippocampal’ computations that are suggested
1 to accomplish several distinct roles: influence transfer of short-term to
::) long-term memory both directly and indirectly, directly by triggering con-
,.' ditioning of conditioned reinforcers. indirectly by generaung positive
iy attentional feedback to neocortical polyvalent cells: and inttuence the

orgamization of a motor map which controls approach and avordance

) behavior by eliciting motivationally biased signals to this motor maoping
‘:' system.
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PART |

1. INTRODUCTION: SELF-ORGANIZING INTERNAL REPRESENTATIONS

Studies of event-related potentials (ERPs) can probe a level of neural organization that
has behavioral meaning. ERP experiments thereby encourage us to formulate precisely
the design problems that are solved by the behaving brain and to translate these design
statements into a formal language that is powerful enough to explain how behavioral,
physiological, and pharmacological processes are related.

[ suggest that these design probiems have cluded traditional physical and mathe-
matical thinking because they address a fundamentally new physical situation. These
problems concern the design of seif-organizing systems, or systems that can generate
new internal representations in response to changing environmental rules. This article
sketches a psychophysiological theory of how new internal representations are gener-
ated. The theory suggests how some ERP-creating mechanisms help to controt the
self-organization process and how to test these assertions empirically.

{n particular, I will suggest that a P300 can be elicited whenever short term memory

(STM) is reset by a massive antagonistic rebound within the catecholamine arousal -

system (Grossberg, 1972b; 1976b; 1978a; 1980a). This suggestion illustrates a sense in
which Pos with different anatomical generators can be functionally similar. It also
shows why task relevance is important in eliciting P300s, since STM cannot be reset
unless it is already active. | will also indicate, however, how a neocortical rebound
might elicit a hippocampal rebound by rapidly inhibiting reinforcing signais from
cortex to hippocampus. Since the cortical rebound resets a cognitive process and the
hippocampal rebound resets 2 motivational process in the theory (Grossberg, 1975),
P3008 with different anatomical generators can be functionally dissimilar. Due to the
importance of interactions between cognitive and motivational processes for the
understanding of both types of processes, | will discuss both cognitive and motivational
processes herein and will suggest new explanations and predictions in both domains
using the same mechanisms, albeit in different anatomical configurations. [ will also
suggest that functional homologues of many normal and abnormal motivational
properties exist in cognitive properties due to the control of both classes of properties by
common mechanisms, notably mechanisms mediated by cholinergic-catecholaminer-
gic interactions. Using these homologues, known motivational phenomena can be used
to suggest designs for new types of cognitive experiments and vice versa.

The theory aiso suggests how a mismatch detector, which regulates mismatch
negativity in the theory. can sometimes elicit a P00 by triggering a burst of nonspecific
arousal to the catecholamine system. An unexpected event can thereby elicit a formal
N200 followed by a Poo.
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7. Biological Rhythms and Mental Disorders

Articles: 2, 3. 4, 5, 21.

Wl This work represents a major development of the theory of gated dipoles. This is
.%lv

3 e . .

:;': , a neural theory of opponent processing which has been of as much use in our work on

color theory (characterizing double opponent red-green or blue-yellow cortical cells) as

-

e it has been in our analyses of cognitive self-organization (reset of attentional focus by an
-

'L?f‘

B unexpected event) or of reinforcement and motivation (characterizing interactions between

fear-relief or hunger-frustration) in midbrain reinforcement circuits. Thus the gated dipole

o M opponent process design appears to be ubiquitous in the nervous system.

K

ta . . . . .
e The present work develops a class of gated dipole properties which are important in
R P P g pole prop

v'!l”r?‘

all these areas: their ability to generate endogenous rhythms. Such rhythms, with variable

frequencies. occur in a number of different neural systems. In particular, we have discovered

o

?“t how a gated dipole circuit can generate endogenous rhythms whose free-running period
?:::r can be tuned by a single network parameter. In the present work, we have exploited a
Z:E:, large quantitative data base about circadian rhythms to develop gated dipole designs of
:';f:.g endogenous oscillators. Such rhythms are of independent interest to AFOSR because of
v,

';:35: their role in contributing to jet lag and to other performance decrements which arise from
;f‘L;: interactions between activity and light cycles.

jﬁ’g ]

‘iz::j Our first discovery was of a specialized gated dipole circuit that behaves like a circadian
g pacemaker. Using this insight, a theory of circadian rhythms was developed and used to
?é&:} quantitatively simulate a large data base concerning the rhythmic behaviors controlled by
:‘;z; the mammalian suprachiasmatic nuclei of the hypothalamus. The appetitive hypothalamic
f-?:".. : circuits of the theory (eating, drinking. sex. fear) are also built up from gated dipole
:?i; components. Thus the theory suggests that several functionally distinct hypothalamic
:::E: circuits are synthesized from gated dipole components.

The theory indicates how the circadian pacemaker can modulate the sensitivity of

Lol 25




e appetitive and cogn. e circuits. and analyses how ultradian (several hour) appetitive
cycles (e.g.. eating) are : ~erimposed upon circadian cycles. These circadian and ultradian
modulatory circuits help t. -egulate how attentional resources are reallocated to different
classes of sensory and cognii ~ cues due to the shifting balance of motivational factors
A through time. It is shown how «. reakdown in the relationship between these circuits can

lead to symptoms characteristic 0 -~ertain mental disorders: e.g.. juvenile hyperactivity
X and simple schizophrenia. These resu. have opened the path to discovery of the auxiliary
KN mechanisms whereby such circuits can a. omatically tune their own parameters to remain

within an optimal operating range.

g Abstracts of two articles are included belo
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A Neural Tlleory of Circadian Rhythms: The Gated Pacemaker

Gail A. Carpenter™' and Stephen Grossberg**-?

1 Deparument of Mathematics. Northeastern University. and Center for Adaptive Systems, Department of Mathematics, Boston University,

Boston. MA. USA

2 Center for Adaptive Systems. Department of Mathematics. Boston University, Boston. MA. USA

Abstract. This article describes a behaviorally, phy-
siologically, and anatomically predictive model of how
circadian rhythms are generated by each suprachias-
matic nucleus (SCN) of the mammalian hypothalamus.
This gated pacemaker model is defined in terms of
competing on-cell off-cell populations whose positive
feedback signals are gated by slowly accumulating
chemical transmitter substances. These components
have also been used to model other hypothalamic
circuits, notably the eating circuit. A parametric ana-
lysis of the types of oscillations supported by the model
is presented. The complementary reactions to light of
diurnal and nocturnal mammals as well as their similar
phase response curves are obtained. The “dead zone™
of the phase response curve during the subjective day
of a noctural rodent is aiso explained. Oscillations are
suppressed " by high intensities of steady light
Openﬁonsthatalterthepanmeteuofthzmodel
transmitters can phase shift or otherwise change its
circadian oscillation. Effects of ablation and hormones
on model oscillations are summarized. Observed oscil-
lations include regular periodic solutions, periodic
plateau solutions, rippled plateau solutions, period
doubling solutions, slow modulation of oscillations
over a period of months, and repeating sequences of
oscillation clusters. The model period increases in-
versely with the transmitter accumulation rate but is
insensitive to other parameter choices except near the
breakdown of oscillations. The model's clocklike na-
ture is thus a mathematical property rather than a
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formal postulate. A singular perturbation approach to
the model’s analysis is described.




A neural theory of circadian rhythms:
Aschoff’s rule in diurnal and nocturnal mammals

GAIL A. CARPENTER AND STEPHEN GROSSBERG
Department of Mathematics, Northeastern University and Center for Adaptive Systems,
Department of Mathematics, Boston University, Boston, Massachusetts 02215

CARPENTER, GAIL A., AND STEPHEN GROSSBERG. A neural
theory of circadian rhythms: Aschoff's rule in diurnal and noc-
turnal mammais. Am. J. Physiol. 247 (Regulatory Integrative
Conp Physiol. 16): R1067-R1082, 1984.—A neural model of
thesuprachissmatic nuclei suggests how behavioral activity, rest,
md circadian period depend on light intensity in diurnal and
nocturnal mammals. These properties are traced to the action
of light input (external zsitgeber) and an activity-mediated
fatigue signal (internal zeitgeber) on the circadian pacemaker.
Light enhances activity of the diurnal model and suppresses
activity of the nocturnal model. Fatigue suppresses activity in
both diurnal and nocturnal models. The asymmetrical action
of light and fatigue in diurnal vs. nocturnal models explains
the more consistent adherence of nocturnal mammals to As-
choff's rule, the consistent adherence of both diurnal and
nocturnal mammals to the circadian rule, and the tendency of
nocturnal mammals to lose circadian rhythmicity at lower light
levels than diurnal memmals. The fatigue signal is related to
the sleep process S of Borbély (Hum. Neurobiol 1: 195-204,
1982.) and contributes to the stability of circadian period. Two
predictions follow: diurnal mammals obey Aschoff’s rule lese
consistently during a seif-selected light-dark cycle than in
constant light, and if light level is increased enough during
slesp in diurnal mammals to compensate for eye closure, then
Aschoff’s rule will hold more consistently. The results are
compared with those of Enright’s model.

hypothalamus: suprachissmatic nuclei; transmitter gate; in-
strumental behavior
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